Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1628, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959191

RESUMO

The suggestion that non-reciprocal critical current (NRC) may be an intrinsic property of non-centrosymmetric superconductors has generated renewed theoretical and experimental interest motivated by an analogy with the non-reciprocal resistivity due to the magnetochiral effect in uniform materials with broken spatial and time-reversal symmetry. Theoretically it has been understood that terms linear in the Cooper pair momentum do not contribute to NRC, although the role of higher-order terms remains unclear. In this work we show that critical current non-reciprocity is a generic property of multilayered superconductor structures in the presence of magnetic field-generated diamagnetic currents. In the regime of an intermediate coupling between the layers, the Josephson vortices are predicted to form at high fields and currents. Experimentally, we report the observation of NRC in nanowires fabricated from InAs/Al heterostructures. The effect is independent of the crystallographic orientation of the wire, ruling out an intrinsic origin of NRC. Non-monotonic NRC evolution with magnetic field is consistent with the generation of diamagnetic currents and formation of the Josephson vortices. This extrinsic NRC mechanism can be used to design novel devices for superconducting circuits.

2.
Nano Lett ; 22(2): 792-800, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35007089

RESUMO

Topological superconductors have attracted tremendous excitement as they are predicted to host Majorana zero modes that can be utilized for topological quantum computing. Candidate topological superconductor Sn1-xInxTe thin films (0 < x < 0.3) grown by molecular beam epitaxy and strained in the (111) plane are shown to host quantum interference effects in the conductivity coexisting with superconducting fluctuations above the critical temperature Tc. An analysis of the normal state magnetoresistance reveals these effects. A crossover from weak antilocalization to localization is consistently observed in superconducting samples, indicating that superconductivity originates dominantly from charge carriers occupying trivial states that may be strongly spin-orbit split. A large enhancement of the conductivity is observed above Tc, indicating the presence of superconducting fluctuations. Our results motivate a re-examination of the debated pairing symmetry of this material when subjected to quantum confinement and lattice strain.

3.
Nat Commun ; 12(1): 5312, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493723

RESUMO

Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1-3. Here we investigate transport properties of hDWs in the ν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity.

4.
Proc Natl Acad Sci U S A ; 116(44): 21992-21997, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611403

RESUMO

Point defects, such as oxygen vacancies, control the physical properties of complex oxides, relevant in active areas of research from superconductivity to resistive memory to catalysis. In most oxide semiconductors, electrons that are associated with oxygen vacancies occupy the conduction band, leading to an increase in the electrical conductivity. Here we demonstrate, in contrast, that in the correlated-electron perovskite rare-earth nickelates, RNiO3 (R is a rare-earth element such as Sm or Nd), electrons associated with oxygen vacancies strongly localize, leading to a dramatic decrease in the electrical conductivity by several orders of magnitude. This unusual behavior is found to stem from the combination of crystal field splitting and filling-controlled Mott-Hubbard electron-electron correlations in the Ni 3d orbitals. Furthermore, we show the distribution of oxygen vacancies in NdNiO3 can be controlled via an electric field, leading to analog resistance switching behavior. This study demonstrates the potential of nickelates as testbeds to better understand emergent physics in oxide heterostructures as well as candidate systems in the emerging fields of artificial intelligence.

5.
Phys Rev Lett ; 122(4): 047003, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768322

RESUMO

We report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe_{2} nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature T, the increasing critical current I_{c} exhibits a sharp upturn at a temperature T_{*} around 20% of the junction critical temperature for several different samples and various gate voltages. The I_{c} vs T demonstrates a short junction behavior for T>T_{*}, but crosses over to a long junction behavior for T

6.
Phys Rev Lett ; 119(4): 046803, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341779

RESUMO

In this work, we use electrostatic control of quantum Hall ferromagnetic transitions in CdMnTe quantum wells to study electron transport through individual domain walls (DWs) induced at a specific location. These DWs are formed due to the hybridization of two counterpropagating edge states with opposite spin polarization. Conduction through DWs is found to be symmetric under magnetic field direction reversal, consistent with the helical nature of these DWs. We observe that long domain walls are in the insulating regime with a localization length of 4-6 µm. In shorter DWs, the resistance saturates to a nonzero value at low temperatures. Mesoscopic resistance fluctuations in a magnetic field are investigated. The theoretical model of transport through impurity states within the gap induced by spin-orbit interactions agrees well with the experimental data. Helical DWs have the required symmetry for the formation of synthetic p-wave superconductors. The achieved electrostatic control of a single helical domain wall is a milestone on the path to their reconfigurable network and ultimately to a demonstration of the braiding of non-Abelian excitations.

7.
Nat Nanotechnol ; 11(4): 345-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780658

RESUMO

The spin-helical Dirac fermion topological surface states in a topological insulator nanowire or nanoribbon promise novel topological devices and exotic physics such as Majorana fermions. Here, we report local and non-local transport measurements in Bi2Te3 topological insulator nanoribbons that exhibit quasi-ballistic transport over ∼2 µm. The conductance versus axial magnetic flux Φ exhibits Aharonov-Bohm oscillations with maxima occurring alternately at half-integer or integer flux quanta (Φ0 = h/e, where h is Planck's constant and e is the electron charge) depending periodically on the gate-tuned Fermi wavevector (kF) with period 2π/C (where C is the nanoribbon circumference). The conductance versus gate voltage also exhibits kF-periodic oscillations, anti-correlated between Φ = 0 and Φ0/2. These oscillations enable us to probe the Bi2Te3 band structure, and are consistent with the circumferentially quantized topological surface states forming a series of one-dimensional subbands, which undergo periodic magnetic field-induced topological transitions with the disappearance/appearance of the gapless Dirac point with a one-dimensional spin helical mode.

8.
Nat Commun ; 6: 7426, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067452

RESUMO

Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 µm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

9.
Sci Rep ; 5: 8452, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25677703

RESUMO

Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.

10.
Phys Rev Lett ; 106(1): 016804, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231765

RESUMO

Preferential orientation of the stripe phases in the quantum Hall (QH) regime has remained a puzzle since its discovery. We show experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the QH regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along the [110] or [110] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...